
Harnessing Large Language Models for Simulink Toolchain
Testing and Developing Diverse Open-Source Corpora of

Simulink Models for Metric and Evolution Analysis

Sohil Lal Shrestha
Computer Science & Eng. Dep.
University of Texas at Arlington

Arlington, Texas, USA

ABSTRACT
MATLAB/Simulink is a de-facto standard tool in several safety-
critical industries such as automotive, aerospace, healthcare, and
industrial automation for system modeling and analysis, compiling
models to code, and deploying code to embedded hardware. On
one hand, testing cyber-physical system (CPS) development tools
such as MathWorks’ Simulink is important as a bug in the toolchain
may propagate to the artifacts they produce. On the other hand, it
is equally important to understand modeling practices and model
evolution to support engineers and scientists as they are widely
used in design, simulation, and veri!cation of CPS models. Existing
work in this area is limited by twomain factors, i.e., (1) ine"ciencies
of state-of-the-art testing schemes in !nding critical tool-chain bugs
and (2) the lack of a reusable corpus of public Simulink models. In
my thesis, I propose to (1) curate a large reusable corpus of Simulink
models to help understand modeling practices and model evolution
and (2) leverage such a corpus with deep-learning based language
models to test the toolchain.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Model-driven software engineering; Open source
model; •Computingmethodologies→Transfer learning; • In-
formation systems→ Language models; • Computer systems
organization→ Embedded and cyber-physical systems.

KEYWORDS
Cyber-physical system development, Simulink, tool chain bugs,
deep learning, programming language modeling, GPT-2, mining
software repositories, open-source, model evolution

ACM Reference Format:
Sohil Lal Shrestha. 2023. Harnessing Large Language Models for Simulink
Toolchain Testing andDevelopingDiverse Open-Source Corpora of Simulink
Models for Metric and Evolution Analysis. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3597926.3605233

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3605233

1 INTRODUCTION AND MOTIVATION
MATLAB/Simulink is a graphical programming environment for
modeling, simulating, and analyzing multi-domain dynamical sys-
tems and is a de-facto standard for model-based design. Engineers
create Simulink models and compile them to embedded code, of-
ten to control safety-critical cyber-physical systems in automotive,
aerospace, and healthcare applications. Despite Simulink’s impor-
tance, there are few large-scale empirical research tackling software
engineering problems such as !nding bugs in the tool chain and
understanding modeling practices and model evolution to better
aid development of CPS model using the toolchain.

Recent years have seen an increasing interest in automated val-
idation of tool chains such as Simulink. Although, in software
engineering, there are a multitude of ways to !nd bugs, approaches
such as formal veri!cation that guarantees a bug-free toolchain is
not applicable to Simulink due to its large code base and lack of
complete formal speci!cation, which can be partly attributed to its
commercial nature. An alternative is fuzzing [3], which is randomly
generating valid or semi-valid inputs that are used to stress test
compilers. State-of-the-art Simulink-testing tool SLforge combined
randomized fuzzing with di#erential testing and found 8 new bugs
in Simulink [4]. To generate random semi-valid inputs (or Simulink
models), SLforge’s team parsed semi-formal speci!cations from
Simulink’s web page automatically and rigorously incorporated
them in SLforge’s random model generator.

Although SLforge has demonstrated its e#ectiveness, it exhibits a
dependency on well-documented speci!cations for updating its ran-
dom model generator. Furthermore, the engineering e#ort required
to maintain the tool does not scale in response to speci!cation
changes or the addition of new features. Furthermore, it is highly
desirable to maintain a reasonable level of !delity with real-world
Simulink models when generating models, as the discovery of bugs
through the use of such models takes precedence in terms of prior-
ity for resolution. Consequently, an alternative approach is desired
that e#ectively overcomes the limitations of SLforge.

In the realm of model-based development research, particularly
in the context of MATLAB/Simulink, close collaborations between
academia and industry have played a pivotal role. These collabora-
tions often involve the utilization of proprietary models that are
not publicly accessible [1]. Moreover, there is a consensus among
researchers that publicly available Simulink models developed by
third parties are generally limited in size, inadequate in represent-
ing real-world models, and di"cult to obtain [5, 6, 9–11]. Recent
investigations have begun to focus on curating extensive collections
of Simulink-based projects sourced from open-source repositories,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1541

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3605233
https://doi.org/10.1145/3597926.3605233

ISSTA ’23, July 17–21, 2023, Sea!le, WA, USA Sohil Lal Shrestha

enabling valuable insights to be derived from their analysis. For
example, Chowdhury et al. [8] curated a corpus of 1,000 Simulink
models and conducted a study on the modeling practices and com-
plexity exhibited by open-source Simulink models. Subsequently,
Boll et al. [2] independently replicated Chowdhury’s study by ac-
quiring the latest version of Chowdhury’s Simulink projects, and
additionally examined the project’s context, size, organization, and
evolution to evaluate its suitability for empirical research.

Despite pioneering the use of larger Simulink-based project
collections and validating their potential similarity to industrial
models, previous attempts at curation were limited by certain fac-
tors. These collections were comprised of URLs leading to non-
permanent resources, and the models contained therein had am-
biguous or unclear licensing information. Additionally, the curation
process relied heavily on manual e#orts, leading to inconsistencies
such as empty projects, duplicate projects, and incomplete meta-
data. Furthermore, the resulting collections were relatively modest
in size, and their curation process may have introduced unintended
human errors and biases.

2 MY RELEVANT PUBLICATIONS:
DEEPFUZZSL, SLGPT, AND SLNET

Besides contributing to SLEMI, the equivalence-modulo-input (EMI)
based Simulink random model generator [6, 7, 16], my main re-
search contributions to date have made signi!cant progress to-
wards creating a large corpus of open-source Simulink models
and leveraging a corpus and deep-learning approaches for generat-
ing random Simulink models. First, on the deep-learning side, to
side-step the age-old problem of missing complete formal speci!ca-
tions of Simulink tool chain and address the limitations of SLforge,
that requires signi!cant research and engineering investment, we
designed DeepFuzzSL—a novel scheme to infer the Simulink’s lan-
guage validity rules via deep learning based language models called
DeepFuzzSL [12, 13]. DeepFuzzSL learns a Long Short Term Mem-
ory (LSTM) based language model from existing corpus of Simulink
models. Using DeepFuzzSL, we are able to consistently generate
over 90% valid Simulink models (on par with the state of the art
SLforge) and found 2 bugs, one of which is missed by SLforge.

Figure 1: SLGPT obtains Simulink models from a random
generator and open-source repositories, simpli!es them, and
uses them to adapt GPT-2 for !nding Simulink crashes.

While deep learning techniques, such as DeepFuzzSL, promise
to learn such language speci!cations from sample models, it needs
a large number of training data to work well. As shown in Figure-1,
SLGPT [15] addresses this problem by using transfer learning to
leverage the powerful Generative Pre-trained Transformer 2 (GPT-
2) model, which has been pre-trained on a large set of training data.
SLGPT adapts GPT-2 to Simulink with both randomly generated
models and models mined from open-source repositories. SLGPT
produced Simulink models that are both more similar to open-
source models than its closest competitor, DeepFuzzSL, and found
a super-set of the Simulink toolchain bugs found by DeepFuzzSL.

Figure 2: SLNET-Miner collects data, from GitHub and MAT-
LAB Central, removes duplicated projects or those with in-
appropriate license. SLNET-Metrics extracts model metrics.

Second, on the corpus construction side, existing work using
deep learning techniques to generate random Simulink models that
test Simulink toolchain is limited by the size and quality of train-
ing data. Closely related, deepening our understanding of Simulink
models andmodeling practices is important as it is crucial to develop
tools to better support engineers that use Simulink toolchain for
system design. To address the dataset problem, we automate corpus
construction and analysis, including data cleaning, metric compu-
tation, and packaging–and built SLNET, the largest collection of
Simulink models that is fully self-contained and redistributable [14].
SLNET is at least 7 times larger than previous corpora and its open-
source data collection tool allows to scale the corpus in the future.
Such large corpus of third-party Simulink models may make it
easier for engineers and researchers to produce, reproduce, and val-
idate empirical results about Simulink models, modeling practices,
and tools that operate on such models.

3 RESEARCH GAP(S) AND QUESTIONS

3.1 Understanding Simulink Modeling Practices
Despite Simulink’s importance, the research community’s insights
on Simulink models and modeling practices remains shallow. The
few existing empirical studies of Simulink models have been limited
to proprietary models or a small number of public models. Earlier
studies on large model corpora su#er from inconsistencies hin-
dering reproduction and generalization of results . To investigate

1542

Harnessing Language Models and Large Corpora for Simulink Tool chain testing and Analysis ... ISSTA ’23, July 17–21, 2023, Sea!le, WA, USA

inconsistencies within earlier studies on Simulink model corpora
and modeling practices, we plan to reproduce prior studies, which
will help us highlight key issues that future research can learn
and bene!t from. Then, using a new large-scale corpus SLNET, we
will replicate prior studies that used smaller model collections and
provide insights on Simulink modeling practices. We focus on the
following research questions:

RQ1 Does SLNET have similar metric distributions as the ear-
lier corpora?

RQ2 How do the empirical results obtained in earlier studies
on smaller corpora carry over to the larger SLNET corpus?

RQ3 Are SLNET Simulink models con!gured to be compiled
to C/C++ code for deployment on embedded devices?

3.2 Building a Corpus of Open-source Simulink
Projects for Evolution Study

Having readily available corpora is crucial for performing replica-
tion, reproduction, extension, and veri!cation studies of existing
research tools and techniques. SLNET focused on curating a diverse
set of Simulink models from di#erent sources and domains but to
limit the corpus’s size, SLNET only included the latest snapshot of
the models or projects. While its metadata links to each project’s
full revision history, not all projects are still available from the
original sources. To support studies relating to model evolution,
having a large collection of projects with full revision history is
essential. To demonstrate the value of such a corpus, we explore
if an evolution study conducted using closed-source project can
be done using open-source software. Speci!cally, we focus on the
following research question.

RQ4 Do model changes documented for a single closed-source
industrial project generalize to open-source projects?

3.3 Facilitating Simulink Model Search
Having a search engine to !nd a code snippet or a project has aided
software engineering community tremendously. However, existing
search engines lack necessary support for meeting the speci!c de-
mands of engineers searching for Simulink models or projects. To
address the issue, we aim to leverage the existing infrastructure
of SLNET, that contains automated mining and metric collection
tools, to develop a web application that facilitates advanced search
capabilities for Simulink models and projects. To evaluate the e#ec-
tiveness and e"ciency of the proposed web application, we focus
on the following research questions.

RQ5 What are the speci!c search requirements and challenges
faced by researchers when searching for Simulink models or
projects?

RQ6 To what extent does the web application enhance the ef-
!ciency of Simulink model/project search in terms of search
time and e#ort?

4 PROPOSED METHODOLOGY

4.1 Understanding Simulink Modeling Practices
Figure-3 presents the application of the ACM’s guidelines on repro-
ducibility (“di#erent team, same experimental setup”) and replica-
bility (“di#erent team, di#erent experimental setup”) to empirical

Modela
@ versionb

Metric toole
@ versionf

Metricc w/
definitiond

Simulink
@ versionh

Toolboxg

@ versionh

Result
ra,b,c,d,e,f,g,h,i

Research
teami

Figure 3: Overview of parameters considered in reproducing
and replicating earlier results on Simulink models.

studies conducted on Simulink models. The !gure provides an
overview of the pertinent variables involved in our study. To en-
sure the integrity and validity of our research, our methodology
consists of two main stages.

In !rst stage, we aim to reproduce the results of prior studies by
employing the original tools and artifacts. We will establish commu-
nication with the original authors to address any uncertainties or
inconsistencies, ensuring that our reproduction accurately re$ects
the !ndings. The primary motivation behind this reproduction ef-
fort is to address concerns regarding unintended human errors and
bias, for which empirical evidence has been insu"cient.

In the second stage, we will systematically replicate the results
obtained from earlier studies using SLNET. To achieve this, we
will develop and/or extend the metric collection and analysis tool.
This will enable us to obtain repeatable results and facilitate a fair
comparison with the !ndings of previous studies. We will conduct
sanity tests on the tools we develop to ensure their consistency
with earlier research. Furthermore, we will engage in clarifying
discussions with the original researchers to ensure that the tools
align with the methodologies employed in the previous studies.

By following this approach, we aim to contribute to the robust-
ness and credibility of empirical research on Simulink models. The
systematic reproduction and replication process will help address
any inconsistencies, validate prior !ndings, and provide a founda-
tion for future investigations in this !eld.

4.2 Building a Corpus of Open-source Simulink
Projects for Evolution Study

During the construction of SLNET, our initial approach involved
a shallow search on repository hosting sites such as GitHub and
included only projects’ snapshots to limit the size of SLNET. As
a result, SLNET did not support evolution studies since it lacked
projects with a revision history. To curate projects suitable for evo-
lution study, we extended SLNET’s collection tool to enable the
download of the entire Git repository while satisfying GitHub’s API
limits. We performed an extensive search by downloading reposi-
tories (a) that use MATLAB programming language or (b) whose
metadata such as the repository name, description, or README !le
contain the keyword "Simulink," aligning with SLNET’s approach.
We then !ltered the search results by only keeping projects that
(1) have Simulink model !le that Simulink can open and (2) have a
license that allows redistribution.

Our collection process resulted in the acquisition of more than
13,500 projects, which we have named EvoSL+. We systematically

1543

ISSTA ’23, July 17–21, 2023, Sea!le, WA, USA Sohil Lal Shrestha

EvoSL

EvoSL-Miner

3

EvoSL-Cleaner

1,2,3

Forked
projects

SL Root
projects

1

2,3

22,3

Simulink

4,6
4,5,6,7

5

5,6,7

Commit meta-
data, issues, PR,

comments

Root projects
4,5,6,7

Project summaries

5

E
v
o

S
L

+

Figure 4: Overview of EvoSL collection and cleaning steps:
EvoSL-Miner downloads EvoSL+ (Git projects and metadata),
from which EvoSL-Cleaner removes certain Git repositories.

extracted issue tracking metadata and processed the commit meta-
data of each project to facilitate convenient access and sampling. To
ensure data integrity, we removed any duplicate projects and those
that exhibited minimal changes in Simulink model !les. As a result,
we established EvoSL, a curated distribution comprising over 900
projects with 140K commits. This corpus is signi!cant as it is the
!rst extensive collection of open-source models that encompasses
both model and project changes and permits redistribution. Lever-
aging the EvoSL corpus, our research aims to investigate whether
observed model evolution changes in a closed-source industrial
project are applicable to open-source projects in general.

4.3 Facilitating Simulink Model Search
To gain an understanding of the Simulink model attributes that
are of interest to the research community, we will initiate a survey
involving researchers and industry experts. By analyzing the survey
results, our objective is to identify advanced !ne-grained !ltering
attributes. These attributes will enable users to e"ciently sample
and locate models that align with their speci!c requirements.

Figure 5: Overview of Simulink model search engine

Figure-5 illustrates the proposed architecture of the web search
engine. Leveraging the existing infrastructure of SLNET and EvoSL,
we will periodically mine open-source repository hosting sites to
gather project, model and commit metrics. These metrics will be
stored in a MongoDB database. To enhance the functionality of the
tools, we will leverage insights obtained from the survey results to
incorporate additional features both in metric collection tools and
search user interface.

Users will interact with the web application by utilizing the
search interface depicted in Figure 6. Through this interface, they

Figure 6: User interface of web app displaying search results

can query the search engine to retrieve relevant information. The
development of the web-based search tool will follow an iterative
feedback loop, allowing us to continuously incorporate user sug-
gestions, as well as address any reported bugs or issues.

5 CONCLUSIONS
Model based research using Simulink and its scienti!c progress
have been severely limited due to a lack of access to readily avail-
able engineered Simulink models. This has lead many research
groups to either construct their own evaluation subjects (which
raises questions about how these results generalize) or they re-
lied on proprietary models from industry partners (which raises
questions about how reproducible such results are). Our work on
understanding modeling practices and replicating results will help
support the relevance and presence of high quality Simulink mod-
els. Our ultimate goal of our corpus collections is to empower the
community to perform new and more powerful empirical studies.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. 1911017 and a gift from
MathWorks.

1544

Harnessing Language Models and Large Corpora for Simulink Tool chain testing and Analysis ... ISSTA ’23, July 17–21, 2023, Sea!le, WA, USA

REFERENCES
[1] Vincent Bertram, Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael

von Wenckstern. 2017. Component and Connector Views in Practice: An Experi-
ence Report. In MODELS. IEEE Computer Society, 167–177.

[2] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo Kehrer, and Andreas
Vogelsang. 2021. Characteristics, potentials, and limitations of open-source
Simulink projects for empirical research. SoSyM (2021), 1–20. https://doi.org/10.
1007/s10270-021-00883-0

[3] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-KeenWong, Xiaoli Z. Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013. 197–208. https://doi.org/10.1145/2491956.2462173

[4] Sha!ul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically !nding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). ACM.

[5] Sha!ul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically !nding bugs in a
commercial cyber-physical system development tool chain with SLforge. In ICSE.
ACM, 981–992. https://doi.org/10.1145/3180155.3180231

[6] Sha!ul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of
CPS models for !nding compiler bugs in Simulink. In ICSE. ACM, 335–346.
https://doi.org/10.1145/3377811.3380381

[7] Sha!ul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Finding Simulink Compiler Bugs through Equivalence
Modulo Input (EMI). In Proc. 42nd International Conference on Software Engi-
neering (ICSE), Companion Volume. ACM, 1–4. https://doi.org/10.1145/3377812.
3382147

[8] Sha!ul AzamChowdhury, Lina Sera Varghese, SoumikMohian, Taylor T. Johnson,
and Christoph Csallner. 2018. A curated corpus of Simulink models for model-
based empirical studies. In SEsCPS. ACM, 45–48. https://doi.org/10.1145/3196478.
3196484

[9] Zhenying Jiang, Xiao Wu, Zeqian Dong, and Ming Mu. 2017. Optimal Test
Case Generation for Simulink Models Using Slicing. In QRS-C. 363–369. https:
//doi.org/10.1109/QRS-C.2017.67

[10] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2015.
E#ective test suites for mixed discrete-continuous state$ow controllers. In
ESEC/FSE. ACM, 84–95. https://doi.org/10.1145/2786805.2786818

[11] A. Chakrapani Rao, A. Raouf, Gunwant Dhadyalla, and V. Pasupuleti. 2017. Mu-
tation Testing Based Evaluation of Formal Veri!cation Tools. In DSA. IEEE, 1–7.
https://doi.org/10.1109/DSA.2017.10

[12] Sohil Lal Shrestha. 2020. Automatic generation of Simulink models to !nd bugs in
a cyber-physical system tool chain using deep learning. In Proc. 42nd International
Conference on Software Engineering (ICSE), Companion Volume. ACM, 110–112.
https://doi.org/10.1145/3377812.3382163

[13] Sohil Lal Shrestha, Sha!ul Azam Chowdhury, and Christoph Csallner. 2020.
DeepFuzzSL: Generating models with deep learning to !nd bugs in the Simulink
toolchain. In DeepTest 2020. ACM.

[14] Sohil Lal Shrestha, Sha!ul Azam Chowdhury, and Christoph Csallner. 2022.
SLNET: A Redistributable Corpus of 3rd-party SimulinkModels. In 19th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2022, Pittsburgh,
PA, USA, May 23-24, 2022. ACM, 1–5. https://doi.org/10.1145/3524842.3528001

[15] Sohil Lal Shrestha and Christoph Csallner. 2021. SLGPT: Using Transfer Learn-
ing to Directly Generate Simulink Model Files and Find Bugs in the Simulink
Toolchain. In EASE 2021: Evaluation and Assessment in Software Engineering,
Trondheim, Norway, June 21-24, 2021. ACM, 260–265. https://doi.org/10.1145/
3463274.3463806

[16] Sohil Lal Shrestha, Saroj Panda, and Christoph Csallner. 2018. Complementing
Machine Learning Classi!ers via Dynamic Symbolic Execution: "Human vs. Bot
Generated" Tweets. In 6th IEEE/ACM InternationalWorkshop on Realizing Arti!cial
Intelligence Synergies in Software Engineering, RAISE@ICSE 2018, Gothenburg,
Sweden, May 27, 2018, Walter F. Tichy and Leandro L. Minku (Eds.). ACM, 15–20.
https://doi.org/10.1145/3194104.3194111

Received 2023-05-24; accepted 2023-06-07

1545

https://doi.org/10.1007/s10270-021-00883-0
https://doi.org/10.1007/s10270-021-00883-0
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/3180155.3180231
https://doi.org/10.1145/3377811.3380381
https://doi.org/10.1145/3377812.3382147
https://doi.org/10.1145/3377812.3382147
https://doi.org/10.1145/3196478.3196484
https://doi.org/10.1145/3196478.3196484
https://doi.org/10.1109/QRS-C.2017.67
https://doi.org/10.1109/QRS-C.2017.67
https://doi.org/10.1145/2786805.2786818
https://doi.org/10.1109/DSA.2017.10
https://doi.org/10.1145/3377812.3382163
https://doi.org/10.1145/3524842.3528001
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3194104.3194111

